![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Главная Рефераты по рекламе Рефераты по философии Рефераты по финансам Рефераты по химии Рефераты по цифровым устройствам Рефераты по экологическому праву Рефераты по экономико-математическому моделированию Рефераты по экономической географии Рефераты по экономической теории Рефераты по этике Рефераты по юриспруденции Рефераты по языковедению Рефераты по юридическим наукам Рефераты по истории Рефераты по компьютерным наукам Рефераты по медицинским наукам Рефераты по финансовым наукам Рефераты по управленческим наукам Рефераты по строительным наукам Психология педагогика Промышленность производство Биология и химия Языкознание филология Издательское дело и полиграфия Рефераты по краеведению и этнографии Рефераты по религии и мифологии Рефераты по медицине Рефераты по сексологии Рефераты по москвоведению Рефераты по экологии Краткое содержание произведений Рефераты по физкультуре и спорту Топики по английскому языку Рефераты по математике Рефераты по музыке Остальные рефераты |
Статья: Уравнение Пуассона. Его применение для расчета полей в вакуумеСтатья: Уравнение Пуассона. Его применение для расчета полей в вакуумеМ.И. Векслер, Г.Г. Зегря Уравнение Пуассона для ε = 1 выглядит:
Это уравнение - основа практических численных расчетов. В задачах, решаемых аналитически, φ и ρ обычно зависят только от одной координаты. При интегрировании можно вычислять интегралы как неопределенные, не забывая выписывать +const, а затем отдельно находить эти константы. Если раccматриваются отдельные диапазоны координат, то на незаряженных границах необходимо "сшивать" потенциал: φ и - для вакуума - d φ/dx (или dφ/dr) не должны иметь разрыва. Если граница заряжена (σ), то dφ/dx испытывает скачок на величину –σ/ε0. Кроме того, если ρ и суммарный заряд конечны, то φ всюду конечен. Другой
вариант - сразу правильно писать пределы интегрирования. Для этого используется
известное (или очевидное из симметрии задачи) значение поля (
после переноса r2 в правую часть и двух последовательных интегрирований получаем:
При этом взято φ|r = ∞ = 0 и учтено то обстоятельство, что при всюду конечном ρ поле в центре равно нулю (–dφ/dr|r = 0 = 0). Задача. Пластина ширины 2a (ее ε≈ 1) заряжена равномерно по объему (ρ(x) = ρ0); при x = 0 (центр пластины) φ = 0. Найти φ(x). Ответ:
Задача. Пластина ширины 2a (ее ε≈ 1) заряжена как ρ(x) = α x2; при x = 0 (центр пластины) φ = 0. Найти φ(x). Решение: Мы работаем в декартовой системе координат, причем очевидно, что и поле, и потенциал зависят только от x. Если ρ>0 (α >0) то поле - из симметрии задачи - направлено по оси x при x>0 и против оси x при x<0. Согласно уравнению Пуассона:
После первого интегрирования (интеграл берем как неопределенный)
Неверным было бы записать одну общую константу для dφ /dx при x>a и x<–a. Второе интегрирование дает:
Для нахождения шести констант у нас есть четыре условия сшивания (по два для границ x = –a и x = a). Кроме того, дано указание взять φ(0) = 0. Видно также, что Ex|x = 0 = –dφ/ dx|x = 0 = 0. Последнее очевидно из симметрии задачи. Отсюда сразу
Из симметрии следует также, что φ(x) = φ(–x) и что Ex(x) = –Ex(–x), вследствие чего
Это делает достаточным рассмотрение условий сшивания только на одной из границ, например при x = a:
Сначала получаем AR (AR = –α a3/3ε0), а затем BR (BR = α a4/4ε0), после чего остается выписать ответ:
Альтернативой было бы интегрирование с выписыванием пределов сразу:
Такое интегрирование верно всегда, в том числе при x<0. Точки x = ± a при этом ничем не выделены, но надо помнить, что вне участка –a<x<a ρ = 0 и учитывать это при подстановке плотности заряда в выражение для интеграла. После взятия интеграла в таком виде сшивание потенциала не требуется.
Задача. Шар радиуса R заряжен как ρ(r) = ρ0(1–r/R). Найти полный заряд шара Q, поле Er(r), а также потенциал φ(r) при r = 0... +∞. Решение: Полный заряд шара находится как
При вычислении мы использовали выражение для элемента объема dV в сферических координатах (не следует смешивать фигурирующий при этом φ с обозначением потенциала). Уравнение Пуассона записывается:
Поcле однократного интегрирования в пределах 0... r имеем
Заметим,
что - с точностью до знака - мы уже получили поле, поскольку
Список литературы 1. И.Е. Иродов, Задачи по общей физике, 3-е изд., М.: Издательство БИНОМ, 1998. - 448 с.; или 2-е изд., М.: Наука, 1988. - 416 с. 2. В.В. Батыгин, И.Н. Топтыгин, Сборник задач по электродинамике (под ред. М.М. Бредова), 2-е изд., М.: Наука, 1970. - 503 с. 3. Л.Д. Ландау, Е.М. Лифшиц, Теоретическая физика. т.8 Электродинамика сплошных сред, 2-е изд., М.: Наука, 1992. - 661 с. Для подготовки данной работы были использованы материалы с сайта http://edu.ioffe.ru/r |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|