![]() |
|||||||||||||||||||||||||||||||||||||||
Главная Рефераты по рекламе Рефераты по философии Рефераты по финансам Рефераты по химии Рефераты по цифровым устройствам Рефераты по экологическому праву Рефераты по экономико-математическому моделированию Рефераты по экономической географии Рефераты по экономической теории Рефераты по этике Рефераты по юриспруденции Рефераты по языковедению Рефераты по юридическим наукам Рефераты по истории Рефераты по компьютерным наукам Рефераты по медицинским наукам Рефераты по финансовым наукам Рефераты по управленческим наукам Рефераты по строительным наукам Психология педагогика Промышленность производство Биология и химия Языкознание филология Издательское дело и полиграфия Рефераты по краеведению и этнографии Рефераты по религии и мифологии Рефераты по медицине Рефераты по сексологии Рефераты по москвоведению Рефераты по экологии Краткое содержание произведений Рефераты по физкультуре и спорту Топики по английскому языку Рефераты по математике Рефераты по музыке Остальные рефераты |
Реферат: Интеграл по комплексной переменнойРеферат: Интеграл по комплексной переменнойОпределение 1: Кривая Г называется гладкой ,если она имеет непрерывно изменяющуюся касательную. Определение 2: Кривая называется кусочно-гладкой ,если она состоит из конечного числа гладких дуг. Основные свойства : Пусть на комплексной плоскости Z задана кусочно-гладкая кривая С длиной l, используя параметрическое задание кривой С зададим h(t) и x (t), где h и x являются кусочно-гладкими кривыми от действительной переменной t. Пусть a t i. Dz i =z i – z i-1. Составим интегрируемую функцию S = åf (z*)Dz i . (1) Если при стремлении max |Dz i |® 0 существует предел частных сумм не зависящий ни от способа разбиения кривой С на частичные дуги, ни от выбора точек z i , то этот предел называется интегралом от функции f (z ) по кривой С.
f (zi* ) = u (Pi*) + iv (Pi*) (3) где Dz i = Dx (t) + iDh(t) (x (t) и h(t) - действительные числа) Подставив (3) в (1) получим : (4) Очевидно, что (4) состоит из суммы двух частных сумм, криволинейных интегралов действительной переменной. Переходя в (4) к пределу при Dx и Dh ® 0 и предполагая, что данные пределы существуют, получаем : (5) Заметим, что для существования криволинейного интегралов, входящих в (5), а тем самым и для существования интеграла (2) достаточно кусочной непрерывности функций u и v. Это означает, что (2) существует и в случае неаналитичности функции f (z ). Сформулируем некоторые свойства интеграла от функции комплексной переменной. Из равенства (5) следуют свойства :
При этом z = j (z ). 7.) Пусть Cp – окружность радиуса r, с центром в точке Z0. Обход вокруг контура Cp осуществляется против часовой стрелки. Cp : z = Z0 + r×eij, 0 £ j £ 2p, dz = ir×eij dj .
ТЕОРЕМА КОШИ. В качестве положительного обхода контура выберем направление при котором внутренняя область, ограниченная данным замкнутым контуром остается слева от направления движения :
( 8 ) ТЕОРЕМА : Пусть в односвязной области G задана аналитическая функция f(Z), тогда интеграл от этой функции по замкнутому контуру Г целиком лежащему в G , равен нулю. Доказательство : из формулы (5) следует:
По условию Коши-Римана в последних равенствах скобки равны нулю, а значит и оба криволинейных интеграла равны нулю. Отсюда :
ТЕОРЕМА 2 (Вторая формулировка теоремы Коши) : Если функция f(z) является аналитической в односвязной области G, ограниченной кусочно-гладким контуром C, и непрерывна в замкнутой области G, то интеграл от такой функции по границе С области G равен нулю. TEOPEMA 3 (Расширение теоремы Коши на многосвязную область) :
, где С – полная граница области G, состоящая из контуров С1, С2, .. , Сn. Причем обход кривой С осуществляется в положительном направлении. Неопределенный интеграл.
Следствием формулы Коши является следующее положение : пусть f(Z) аналитична в односвязной области G, зафиксируем в этой области точку Z0 и обозначим: интеграл по какой-либо кривой, целиком лежащей в области G, содержащей Z0 и Z, в силу теории Коши этот интеграл не зависит от выбора кривой интегрирования и является однозначной функцией Ф(Z). Аналитическая функция Ф(Z) называется первообразной от функции f(Z) в области G, если в этой области имеет место равенство : Ф¢ (Z) = f( Z). Определение: Совокупность всех первообразных называется неопределенным интегралом от комплексной функции f(Z). Так же как и в случае с функцией действительного переменного имеет место равенство :
( 9) Это аналог формулы Ньютона-Лейбница. Интеграл Коши. Вывод формулы Коши.
Пусть функция f(Z) – аналитическая функция в односвязной области G, ограниченной контуром С. Возьмем внутри этой области произвольную точку Z0 и в области G вокруг этой точки построим замкнутый контур Г. Рассмотрим вспомогательную функцию j (Z). Эта функция аналитична в области G всюду, кроме точки Z=Z0. Проведем контур g с достаточным радиусом, ограничивающий точку Z0, тогда функция будет аналитична в некоторой двусвязной области, заключенной между контурами Г и g. Согласно теореме Коши имеем : По свойствам интегралов : (2 )
(3) Уравнение окружности gr : z = Z0 + reij (4) Подставив (4) в (3) получим : ( 5 )
( 6 )
(7)
Тогда т.к. функция f(z) аналитична в точке Z=Z0 и всюду в области G, а следовательно и непрерывна в G, то для всех e>0 существует r>0, что для всех z из r–окрестности точки Z0 выполняется | f(z) – f(Z0) | < e.>
(8) Подставив ( 7) в ( 6) с учетом ( 8) получаем :
(9)
Интеграл, стоящий в (9) в правой части выражает значение аналитической функции f(z) в некоторой точке Z0 через ее значение на произвольном контуре g , лежащем в области аналитичности функции f(z) и содержащем точку Z0 внутри. Очевидно, что если бы функция f(z) была аналитична и в точках контура С, то в качестве границы g в формуле (9) можно было использовать контур С. Приведенные рассуждения остаются справедливыми и в случае многосвязной области G. Следствие : Интеграл Коши, целиком принадлежащий аналитической области G имеет смысл для любого положения Z0 на комплексной плоскости при условии, что эта точка есть внутренней точкой области Г. При этом если Z0 принадлежит области с границей Г, то значение интеграла равно (9), а если т. Z0 принадлежит внешней области, то интеграл равен нулю :
Интегралы, зависящие от параметра. Рассматривая интеграл Коши, видим, что подинтегральная функция зависит от 2-х комплексных переменных : переменной интегрирования z и Z0. Таким образом интеграл Коши может быть рассмотрен как интеграл, зависящий от параметра, в качестве которого выбираем точку Z0. Пусть задана функция двух комплексных переменных j (Z, z ), причем Z= x + iy в точке, принадлежащей некоторой комплексной плоскости G. z= x+ ih Î С. (С - граница G). Взаимное расположение области и кривой произвольно. Пусть функция j (Z, z ) удовлетворяет условиям : 1) Функция для всех значений z Î С является аналитической в области G. 2) Функция j (Z, z ) и ее производная ¶j/¶Z являются непрерывными функциями по совокупности переменных Z и z при произвольном изменении области G и переменных на кривой С. Очевидно, что при сделанных предположениях :
Эта формула устанавливает возможность вычисления производной от исходного интеграла путем дифференцирования подинтегральной функции по параметру. ТЕОРЕМА. Пусть f(Z) является аналитической функцией в области G и непрерывной в области G (G включая граничные точки ), тогда во внутренних точках области G существует производная любого порядка от функции f(Z) причем для ее вычисления имеет место формула : (3) С помощью формулы (3) можно получить производную любого порядка от аналитической функции f (Z) в любой точке Z области ее аналитичности. Для доказательства этой теоремы используется формула (2) и соответственные рассуждения, которые привели к ее выводу. ТЕОРЕМА МОРЕРА. Пусть f(Z) непрерывна в односвязной области G и интеграл от этой функции по любому замкнутому контуру, целиком принадлежащему G равен 0. Тогда функция f (Z) является аналитической функцией в области G. Эта теорема обобщается и на случай многосвязной области G. Разложение функции комплексного переменного в ряды. Если функция f(x, y) определена и непрерывна вместе с частными производными (до n-го порядка ), то существует разложение этой функции в ряд Тейлора : Итак, если задана функция f (z) комплексного переменного, причем f (z) непрерывная вместе с производными до n-го порядка, то:
Формула (2) записана для всех Z принадлежащих некоторому кругу | Z-Z0 | Функция f (z), которая может быть представлена в виде ряда (2) является аналитической функцией. Неаналитическая функция в ряд Тейлора не раскладывается.
Причем | Z | < R, R ® ¥ .> Формулы ЭЙЛЕРА. Применим разложение (3) положив, что Z = ix и Z= - ix;
Аналогично взяв Z = - ix получим :
Из (6) и (7) можно выразить т.н. формулы Эйлера :
В общем случае :
Известно, что :
Тогда из (9) и (10) вытекает связь между тригонометрическими и гиперболическими косинусами и синусами: Ряд ЛОРАНА. Пусть функция f(z) является аналитической функцией в некотором круге радиусом R, тогда ее можно разложить в ряд Тейлора (2). Получим тот же ряд другим путем. ТЕОРЕМА 1. Однозначная функция f(Z) аналитическая в круге радиусом |Z-Z0| < R раскладывается в сходящийся к ней степенной ряд по степеням Z-Z>0. Опишем в круге радиусом R окружность r, принадлежащую кругу с радиусом R. Возьмем в круге радиуса r точку Z, а на границе области точку z , тогда f(z) будет аналитична внутри круга с радиусом r и на его границе. Выполняется условие для существования интеграла Коши :
Поскольку
Представим равномерно сходящимся рядом в круге радиуса r, умножая (12) на 1/(2pi) и интегрируя по L при фиксированном Z, получим : слева интеграл (13) который равен f (Z), а справа будет сумма интегралов : Обозначая Это разложение функции f (Z) в круге R в ряд Тейлора. Сравнивая (14) с рядом (2) находим, что ТЕОРЕМА 2. Если однозначная функция f(Z) аналитична вне круга с радиусом r с центром в точке Z0 для всех Z выполняется неравенство r < |Z-Z>0 |, то она представляется рядом :
где h - ориентированная против часовой стрелки окружность радиуса r (сколь угодно большое число). Если обозначить
ТЕОРЕМА 3. Если однозначная функция f(Z) аналитическая в кольце Z< |Z-Z>0 |0 существует M>0 и S0³0 такие, что выполняется условие : |f(t)|S0t Рассмотрим функцию f(t)×e-pt , где р – комплексное число р = ( а + i b).
Применим к этому соотношению формулу Эйлера : Проинтегрировав это равенство получим :
Оценим левую часть равенства (2) : А согласно свойству (3) |f(t)| < Me >S0t В случае если a>S0 имеем : Аналогично можно доказать, что существует и сходится второй интеграл в равенстве (2). Таким образом при a>S0 интеграл, стоящий в левой части равенства (2) также существует и сходится. Этот интеграл определяет собой функцию от комплексного параметра р :
Функция F(p) называется изображением функции f(t) по Лапласу, а функция f(t) по отношению к F(p) называется оригиналом. f(t) Ü F(p), где F(p) – изображение функции f(t) по Лапласу.
Смысл введения интегральных преобразований. Этот смысл состоит в следующем : с помощью перехода в область изображения удается упростить решение многих задач, в частности свести задачу решения многих задач дифференциального, интегрального и интегро-дифференциального уравнения к решению алгебраических уравнений. Теорема единственности: если две функции j( t) и Y(t) имеют одно и то же изображение F(p), то эти функции тождественно равны. Смысл теоремы : если при решении задачи мы определим изображение искомой функции, а затем по изображению нашли оригинал, то на основании теоремы единственности можно утверждать, что найденная функция является решением в области оригинала и причем единственным. Изображение функций s0(t), sin (t), cos (t). Определение: Единичная функция удовлетворяет требованиям, которые должны быть наложены на функцию для существования изображения по Лапласу. Найдем это изображение : Изображение единичной функции Рассуждая аналогичным образом получим изображение для функции sin(t) : интегрируя по частям получим :
Аналогично можно доказать, что cos (t) переходит в функцию Изображение функции с измененным масштабом независимого переменного.
Таким образом :
Свойства линейности изображения. Теорема : изображение суммы нескольких функций умноженное на постоянные равны сумме изображений этих функций умноженных на те же постоянные. Если Теорема смещения : если функция F(p) это изображение f(t), то F(a+p) является изображением функции e-at f(t) (4) Доказательство : Применим оператор Лапласа к левой части равенства (4) Что и требовалось доказать. Таблица основных изображений:
Изображение производных. Теорема. Если
Доказательство :
Подставляя (3) в (2) и учитывая третье условие существования функции Лапласа имеем : Что и требовалось доказать. Пример: Решить дифференциальное уравнение :
Предположим, что x(t) – решение в области оригиналов и Изображающее уравнение : Теорема о интегрировании оригинала. Пусть Таким образом операции интегрирования в области оригиналов соответствует операция деления в области изображений. Теорема о интегрировании изображений : Пусть Толкование теоремы : операция деления на аргумент в области оригиналов соответствует операции интегрирования в пределах от р до ¥ в области изображений. Понятие о свертке функций. Теорема о свертке. Пусть заданы две функции a(t) и b(t), удовлетворяющие условиям существования изображения по Лапласу, тогда сверткой таких функций называется следующая функция :
Свертка обозначается следующим образом :
Равенства (1) и (1’) идентичны. Свертка функции подчиняется переместительному закону. Доказательство: Теорема о умножении изображений. Пусть Доказательство : Пусть изображение свертки
Интеграл (1) представляет собой повторный интеграл относительно переменных t и t . Изменим порядок интегрирования. Переменные t и t входят в выражение симметрично. Замена переменной производится эквивалентно. Если в последнем интеграле сделать замену переменной, то после преобразований последний интеграл преобразуется в функцию F2(p). Операция умножения двух функций в пространстве изображений соответствует операции свертки их оригиналов в области оригиналов. Обобщением теоремы о свертке есть теорема Эфроса. Теорема Эфроса. Пусть функция В практических вычислениях важную роль играет следствие из теоремы о свертке, наз. интеграл Дюамеля. Пусть все условия теоремы выполняются, тогда
Соотношение (2) применяется при решении дифференциальных уравнений. Обратное преобразование Лапласа.
Обратное преобразование есть возможность получить функцию-оригинал через известную функцию-изображение :
Пользоваться формулой для обратного преобразования можно при определенном виде функции F(p), либо для численного нахождения функции-оригинала по известному изображению. Теоремы разложения. Известная методика разложения дробно-рациональных функций на сумму элементарных дробей (1)-(4) может быть представлена в виде двух теорем разложения. Первая теорема разложения. Пусть F(p) – изображение некоторой функции, тогда эта функция представляется в виде Вторая теорема разложения. Если изображение представляется дробно-рациональной
функцией
Например : Связь между преобразованиями Фурье и Лапласа. Преобразование Лапласа имеет вид :
На f(t) наложены условия : 1) f(t) определена и непрерывна на всем интервале: (-¥ ; ¥ ) 2) f(t) º 0 , t Î (- ¥ ;0) 3) При M, S0 >0 , для всех t > 0 выполняется условие |f(t)|S0t Если отказаться от условий 2 и 3, и считать, что f(t) принимает произвольное значение при t < 0, то вместо (1) можно рассмотреть следующий интеграл :>
Формула (2) – двустороннее преобразование Лапласа. Пусть в (1) и (2) p =a + in, где a и n – действительные числа. Предположим, что Re(p) = a = 0, т.е.
(4) и (5) соответственно односторонние и двусторонние преобразования Фурье. Для существования преобразования Фурье, функция должна удовлетворять условиям : 1) Должна быть определена на промежутке (-¥ ; ¥ ) , непрерывна всюду, за исключением конечного числа точек разрыва первого рода. 2) Любой конечный промежуток оси t можно разделить на конечное число промежутков, в каждом из которых функция либо кусочно-гладкая, либо кусочно-монотонная. 3) Функция абсолютно интегрируема : Из существования преобразования Лапласа не следует преобразование Фурье. Преобразования Фурье существуют для более узкого класса функций. Преобразования Фурье не существуют для постоянной и ограниченной функции : f(t) = C Аналогично преобразования Фурье не существуют и для гармоничных функций :
Если f(t) = 0 при t>0 и преобразование для этой функции существует, то оно может быть получено из таблицы оригиналов и изображений для преобразования Лапласа путем замены параметра t на iu, но при этом необходимо убедиться, что F(p) не обращается в число справа от мнимой оси. Если f(t) ¹ 0, t
Обозначим Очевидно, что Функция (6) называется спектральной плотностью В связи с изложенным можно указать два пути отыскания спектральной плотности : 1) Вычисление интеграла (5) 2) Использование преобразования Лапласа или Фурье. Непосредственное вычисление спектральной плотности для абсолютно интегрируемой функции. Функция F(iu) может быть представлена, как комплексная функция действительной переменной
|F(iu)| - амплитудное значение спектральной плотности, y (u) – фазовый угол. В алгебраической форме : F(iu) = a(u) +ib(u)
Для непосредственного вычисления спектральной плотности вычисляется интеграл (6), а затем по формулам (8) и (9) определяется амплитудное значение |F(iu)| и фазовый угол y (u). Пример. Найти спектральную плотность импульса : откуда Отыскание спектральной плотности для неабсолютно интегрируемых функций. Прямое преобразование Фурье для таких функций не существует, существует преобразование Лагранжа. Прямое преобразование Фурье необходимо : 1) Для облегчения процесса решения дифференциальных и интегральных уравнений. 2) Для исследования амплитудной и частотной характеристик спектральной плотности, определенной всюду на числовой оси. Введем следующее определение спектральной плотности для неабсолютно интегрируемых функций: Если для заданной функции y=f(t) существует непрерывное изображение по Лапласу F(p), то спектральной плотностью функции называется изображение функции по Лапласу при p = iu. Спектральной плотностью F1(iu) неабсолютно интегрируемой функции называется предел от спектральной плотности F2(iua) абсолютно интегрируемой функции. |
|
|||||||||||||||||||||||||||||||||||||
|